From 1 - 10 / 35
  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Robson Creek site is part of the Far North Queensland (FNQ) Rainforest Site along with affiliated monitoring sites at Cape Tribulation (Daintree Rainforest Observatory) and Cow Bay (Daintree Discovery Centre). The flux station is located at the foothills of the Lamb Range, part of the Wet Tropics World Heritage Area, and north-west of a 25&nbsp;ha census plot established by CSIRO in 2012.</br> <br>The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest (Queensland Government, 2006). There are 211 species in the adjacent 25&nbsp;ha plot, and average tree height is 28&nbsp;m, ranging from 23 to 44&nbsp;m. Elevation of the site is 711&nbsp;m and mean annual precipitation is 2000&nbsp;mm. The upland rainforests of the Atherton Tablelands are some of the most biodiverse and carbon dense forests in Australia. The landform of the 25&nbsp;ha plot which is in the dominant wind direction from the station is moderately inclined with a low relief, a 30&nbsp;m high ridge running north/south through the middle of the plot and a 40&nbsp;m high ridge running north/south on the eastern edge of the plot.</br> <br>The instruments are mounted on a free standing station at 40&nbsp;m. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation.</br> <br>Note: Level 3 data for 2015 - 2018 were updated in 2018 correcting a rainfall issue in 2015 and a wind direction issue 2016 - 2018. A data gap from 2019-02-14 to 2019-02-21 was due to a major power supply failure.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). <br /> <br /> Located in a 5 km<sup>2</sup> block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br /> Tropical savanna in Australia occupies 1.9 million km<sup>2</sup> across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40 % of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> Located in a 5 square kilometre block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br />Tropical savanna in Australia occupies 1.9 million square km across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40% of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br><em>Eucalyptus obliqua</em> forests dominate the vegetation below 650&nbsp;m where they exist as fire-maintained communities. On fertile soils these forests attain mature heights in excess of 55&nbsp;m: the tallest <em>E. obliqua</em> reaches a height of 90&nbsp;m. The flux station is installed in a stand of tall, mixed-aged <em>E. obliqua</em> forest (77 and >250 years-old) with a rainforest understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer, on a small flat of elevation 100&nbsp;m adjacent to the Huon River. The understorey vegetation progresses from wet sclerophyll (dominated by <em>Pomaderris apatala</em> and <em>Acacia dealbata</em>) to rainforest (dominated by <em>Nothofagus cunninghamii</em>, <em>Atherosperma moschatum</em>, <em>Eucryphia lucida</em> and <em>Phyllocladus aspleniifolius</em>) with increasing time intervals between fire events. The site supports prodigous quantities of coarse woody debris as is characteristic of these fire-maintained eucalypt forests on fertile sites in southern Tasmania. The soil at the flux site is derived from Permian mudstone and has a gradational profile with a dark brown organic clayey silt topsoil overlying a yellow brown clay. The climate is classified as temperate with a mild summer and no dry season. Mean annual precipitation is 1700&nbsp;mm with a relatively uniform seasonal distribution. Summer temperatures peak in January (8.4&nbsp;°C to 19.2&nbsp;°C) with winter temperatures reaching their lowest in July (2.6&nbsp;°C to 8.4&nbsp;°C).</br> <br>The instruments are mounted at the top of an 80&nbsp;m tall guyed steel lattice tower. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. An open-path gas analyser (EC150) was replaced by a closed-path gas analyser (EC155) at the end of January 2015. Soil moisture content is measured using time domain reflectometry. Soil heat fluxes and temperature are also measured. Micro-meteorology (CO<sub>2</sub>, H<sub>2</sub>O, energy fluxes) and meteorology (temperature, humidity, wind speed and direction, rainfall) were measured from 2013 to late 2016, but the dataset is incomplete due to ongoing problems since changing the open-path IRGA to a closed path system (CPEC200) during 2015. Soil data (moisture, heat flux, temperature) are complete for the time period.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). <br /> <br /> Located in a 5 km<sup>2</sup> block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br /> Tropical savanna in Australia occupies 1.9 million km<sup>2</sup> across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40 % of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in wet sclerophyll forest using eddy covariance techniques.<br /><br /> <em>Eucalyptus obliqua</em> forests dominate the vegetation below 650 m where they exist as fire-maintained communities. On fertile soils these forests attain mature heights in excess of 55m: the tallest <em>E. obliqua</em>reaches a height of 90m. The flux station is installed in a stand of tall, mixed-aged <em>E. obliqua</em> forest (77 and >250 years-old) with a rainforest understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer, on a small flat of elevation 100 m adjacent to the Huon River. The understorey vegetation progresses from wet sclerophyll (dominated by <em>Pomaderris apatala</em> and <em>Acacia dealbata</em>) to rainforest (dominated by <em>Nothofagus cunninghamii</em>, <em>Atherosperma moschatum</em>, <em>Eucryphia lucida</em> and <em>Phyllocladus aspleniifolius</em>) with increasing time intervals between fire events. The site supports prodigous quantities of coarse woody debris as is characteristic of these fire-maintained eucalypt forests on fertile sites in southern Tasmania. <br />The soil at the flux site is derived from Permian mudstone and has a gradational profile with a dark brown organic clayey silt topsoil overlying a yellow brown clay. <br />The climate of Warra is classified as temperate with a mild summer and no dry season. Mean annual precipitation is 1700 mm with a relatively uniform seasonal distribution. Summer temperatures peak in January (min. 8.4°C – max 19.2°C) with winter temperatures reaching their lowest in July (min 2.6°C – max 8.4°C).<br /><br />The instruments are mounted at the top of an 80m tall guyed steel lattice tower. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. An open-path gas analyser (EC150) was replaced by a closed-path gas analyser (EC155) at the end of Jan 2015.Soil moisture content is measured using Time Domain Reflectometry, while soil heat fluxes and temperature are also measured. Micro-meteorology (CO2, H2O, energy fluxes), meteorology (temp, humidity, wind speed and direction, rainfall) taken from the Warra Flux Site from 2013 to late 2016. Data incomplete due to ongoing problems since changing the open-path IRGA to a closed path system (CPEC200) during 2015. Soil data (moisture, heat flux, temp) complete for time period. This data is also available at http://data.ozflux.org.au .

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). <br /> <br /> Located in a 5 km<sup>2</sup> block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br /> Tropical savanna in Australia occupies 1.9 million km<sup>2</sup> across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40 % of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br />The Cape Tribulation flux station was located in the land that is adjacent to the Daintree National Park which is part of the Wet Tropics World Heritage Area (WTWHA). The site is flanked to the west by coastal ranges rising to more than 1400m and to the east by the Coral Sea. The red clay loam podzolic soils are of metamorphic origin and have good drainage characteristics. The metamorphic rocks grade into granite boulders along Thompson Creek which runs along the northern boundary of the site. The crane site itself is gently sloping but the fetch area makes the site one of very complex terrain. The forest is classed as complex mesophyll vine forest (type 1a) and has an average canopy height of 25m. The dominant canopy trees belong to the Apocynaceae, Arecaceae, Euphorbiaceae, Lauraceae, Meliaceae, Myristicaceae and Myrtaceae families. The forest is continuous for several kilometres around the crane except for an area 300m due east of the crane, which is regrowth forest. Annual average rainfall at the site is around 5180mm and is strongly seasonal, with 66% falling between January and April (wet season). Mean daily temperature ranges from 26.6°C in February to 21.2°C in July. <br> Tropical cyclones are a frequent occurrence in Far North Queensland. These severe tropical storm systems are natural phenomena which play a major role in determining the ecology of Queensland's tropical lowland rainforests. In March 1999 Tropical Cyclone Rona (Category 3) passed over the Cape Tribulation area causing widespread damage (gusts >170km/h). At the site several large trees fell, nearly all of the remaining trees were stripped of leaves and the lianas towers were torn to ground level. <br> The flux station was mounted at the 45m level on the tower of the Australian Canopy Crane external link. The canopy crane is a Liebherr 91 EC, freestanding construction tower crane. The crane is 48.5 metres tall with a radius of 55 metres enabling access to 1 hectare of rainforest. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements above the canopy included temperature, humidity, rainfall, total solar; these measurements have continued post the flux system decommissioning. Heat flux, soil temperature and water content (time domain reflectometry) were measured in proximity to the flux station; these measurements have continued post the flux system decommissioning. Detailed biometric measurements are made at the crane site and all trees have regular (5 yearly) dbh measurements and canopy mapping carried out. Monitoring bores (3) are located on site. Leaf litter measurements are carried out on a monthly basis. <br> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/daintree-rainforest-supersite/ .<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> Located in a 5 square kilometre block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br />Tropical savanna in Australia occupies 1.9 million square km across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40% of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br><em>Eucalyptus obliqua</em> forests dominate the vegetation below 650&nbsp;m where they exist as fire-maintained communities. On fertile soils these forests attain mature heights in excess of 55&nbsp;m: the tallest <em>E. obliqua</em> reaches a height of 90&nbsp;m. The flux station is installed in a stand of tall, mixed-aged <em>E. obliqua</em> forest (77 and >250 years-old) with a rainforest understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer, on a small flat of elevation 100&nbsp;m adjacent to the Huon River. The understorey vegetation progresses from wet sclerophyll (dominated by <em>Pomaderris apatala</em> and <em>Acacia dealbata</em>) to rainforest (dominated by <em>Nothofagus cunninghamii</em>, <em>Atherosperma moschatum</em>, <em>Eucryphia lucida</em> and <em>Phyllocladus aspleniifolius</em>) with increasing time intervals between fire events. The site supports prodigous quantities of coarse woody debris as is characteristic of these fire-maintained eucalypt forests on fertile sites in southern Tasmania. The soil at the flux site is derived from Permian mudstone and has a gradational profile with a dark brown organic clayey silt topsoil overlying a yellow brown clay. The climate is classified as temperate with a mild summer and no dry season. Mean annual precipitation is 1700&nbsp;mm with a relatively uniform seasonal distribution. Summer temperatures peak in January (8.4&nbsp;°C to 19.2&nbsp;°C) with winter temperatures reaching their lowest in July (2.6&nbsp;°C to 8.4&nbsp;°C).</br> <br>The instruments are mounted at the top of an 80&nbsp;m tall guyed steel lattice tower. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. An open-path gas analyser (EC150) was replaced by a closed-path gas analyser (EC155) at the end of January 2015. Soil moisture content is measured using time domain reflectometry. Soil heat fluxes and temperature are also measured. Micro-meteorology (CO<sub>2</sub>, H<sub>2</sub>O, energy fluxes) and meteorology (temperature, humidity, wind speed and direction, rainfall) were measured from 2013 to late 2016, but the dataset is incomplete due to ongoing problems since changing the open-path IRGA to a closed path system (CPEC200) during 2015. Soil data (moisture, heat flux, temperature) are complete for the time period.</br>